A novel physiological culture system that mimics luteal angiogenesis.
نویسندگان
چکیده
Luteal inadequacy is a major cause of poor embryo development and infertility. Angiogenesis, the formation of new blood vessels, is an essential process underpinning corpus luteum (CL) development and progesterone production. Thus, understanding the factors that regulate angiogenesis during this critical time is essential for the development of novel strategies to alleviate luteal inadequacy and infertility. This study demonstrates the development of a physiologically relevant primary culture system that mimics luteal angiogenesis. This system incorporates all luteal cell types (e.g. endothelial, steroidogenic cells, fibroblasts and pericytes). Using this approach, endothelial cells, identified by the specific marker von Willebrand factor (VWF), start to form clusters on day 2, which then proliferate and develop thread-like structures. After 9 days in culture, these tubule-like structures lengthen, thicken and form highly organized intricate networks resembling a capillary bed. Development of the vasculature was promoted by coating wells with fibronectin, as determined by image analysis (P<0.001). Progesterone production increased with time and was stimulated by LH re-enforcing the physiological relevance of the model in mimicking in vivo luteal function. LH also increased the area stained positively for VWF by twofold (P<0.05). Development of this endothelial cell network was stimulated by fibroblast growth factor 2 and vascular endothelial growth factor A, which increased total area of VWF positive staining on day 9, both independently (three- to fourfold; P<0.01) and in combination (tenfold; P<0.001). In conclusion, the successful development of endothelial cell networks in vitro provides a new opportunity to elucidate the physiological control of the angiogenic process in the developing CL.
منابع مشابه
Role of vascular endothelial growth factor in ovarian physiology - an overview.
In the female reproductive system, as in a few adult tissues, angiogenesis occurs as a normal process and is essential for normal tissue growth and development. In the ovary, new blood vessel formation facilitates oxygen, nutrients, and hormone substrate delivery, and also secures transfer of different hormones to targeted cells. Ovarian follicle and the corpus luteum (CL) have been shown to pr...
متن کاملFGF2 is crucial for the development of bovine luteal endothelial networks in vitro.
The development of the corpus luteum requires angiogenesis, and involves the complex interplay between factors such as vascular endothelial growth factor A (VEGFA), fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF). However, the relative role of these factors remains to be elucidated. This study used a new physiologically relevant mixed luteal cell culture system to te...
متن کاملCytokines and Angiogenesis in the Corpus Luteum
In adults, physiological angiogenesis is a rare event, with few exceptions as the vasculogenesis needed for tissue growth and function in female reproductive organs. Particularly in the corpus luteum (CL), regulation of angiogenic process seems to be tightly controlled by opposite actions resultant from the balance between pro- and antiangiogenic factors. It is the extremely rapid sequence of e...
متن کاملPeripheral blood mononuclear cells stimulate progesterone production by luteal cells derived from pregnant and non-pregnant women: possible involvement of interleukin-4 and interleukin-10 in corpus luteum function and differentiation.
Human luteal cells have been reported to express human leukocyte antigen-DR and lymphocyte functional antigen-3 on the cell surface, suggesting physiological interaction between luteal cells and T-lymphocytes through the menstrual cycle into early pregnancy. To elucidate the role of peripheral lymphocytes on corpus luteum differentiation, the effect of peripheral blood mononuclear cells (PBMC) ...
متن کاملAngiogenesis Following Three-Dimensional Culture of Isolated Human Endometrial Stromal Cells
Background Endometriosis is the presence of endometrial tissue outside of the uterine cavity and is the most common gynecologic disorder in women of reproductive age. We have preliminary evidence that in the presence of a 3-dimensional (3-D) fibrin matrix, human endometrial glands, stroma, and neovascularization can develop in vitro, mimicking the earliest stages of endometriosis. The aim of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Reproduction
دوره 135 3 شماره
صفحات -
تاریخ انتشار 2008